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A Python API for simulating and analyzing evolution in genotype-phenotype space.
GPvolve can used to:
1. Build a markov state model from a genotype-phenotype-map.
2. Find clusters of genotypes that represent metastable states of the system, using PCCA+.

3. Compute fluxes and pathways between pairs of genotypes and/or clusters of interest, using Transition Path
Theory.

4. Visualize the outputs of all of the above.

The core-utilities of this library are built on top of the pyemma and msmtools packages. For a deeper understanding
of these tools, we recommend reading the docs and scientific references of the respective libraries ("2,

A rationale for treating fitness landscapes as markov systems can be found in*.

Currently, this package works only as an API. There is no command-line interface. Instead, we encourage you use this
package inside Jupyter notebooks .

! https://github.com/markovmodel/PyEMMA

2 https://github.com/markovmodel/msmtools

3 M K Scherer, B Trendelkamp-Schroer, F Paul, G Pérez-Hernandez, M Hoffmann, N Plattner, C Wehmeyer, J-H Prinz and F Noé: PyEMMA
2: A Software Package for Estimation, Validation, and Analysis of Markov Models, J. Chem. Theory Comput. 11, 5525-5542 (2015)

4 G Sella, A E Hirsh: The application of statistical physics to evolutionary biology, Proceedings of the National Academy of Sciences Jul 2005,
102 (27) 9541-9546; DOI: 10.1073/pnas.0501865102
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CHAPTER 1

User Documentation

1.1 Typical Pipeline

The tools included in the gpvolve API can be combined into a computational pipeline which simplifies the repetition
of analyzes. We recommend using Jupyter notebooks for this purpose.
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In the following example we will to go through the 5 steps shown in the figure above. We note that the pipeline is
modular, meaning that all steps except step 1 and step 2 can be executed in any desired order.
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1.1.1 Example

Import functions.

# Import gpvolve functions explicitly.

from gpvolve import GenotypePhenotypeMSM

from gpvolve.fitness import one_to_one

from gpvolve.fixation import mccandlish

from gpvolve.flux import TransitionPathTheory

from gpvolve.visualization import plot_network, plot_matrix
from gpvolve.paths import flux_decomp

from gpvolve.utils import =«

from gpvolve.cluster.pcca import PCCA

from gpvolve.cluster.base import GenotypePhenotypeClusters
from gpvolve.cluster.utils import =«

from gpvolve.analysis.pathways import =

# Import gpmap for genotype-phenotype data handling
from gpmap.simulate import MultiPeakMountFujiSimulation, MountFujiSimulation

# Helper and plotting functions.
import matplotlib.pyplot as plt
from scipy.sparse import dok_matrix
import pickle

Load data.

Simulate 7-site map with 4 fitness peaks. Can also import exisiting genotype-phenotype data here. See the gpmap
Python package for more information (https://github.com/harmslab/gpmap)

gpm = MultiPeakMountFujiSimulation.from_ length (7, peak_n=4, min_dist=2, roughness_
—width=0.2, field_strength=1)

Build Markov model.

First we need to map a fitness value onto each phenotype. In this example we simple use phenotype values as fitnesses.
The user can also pass their own fitness function here.

’evomsm.apply_selection(one_to_one)

Building the transition matrix requires the user to define a fixation probability function and all its required parame-
teres. Here, we use the fitness function by McCandlish (McCandlish, 2011) and a population size of 10.

’evomsm.build_transition_matrix(mccandlish, population_size=10)

Transition Path Theory

Having built an evolutionary Markov model of the genotype-phenotype map, we can use Transition Path Theory to
compute reactive flux that moves from the wild type to the 7-site mutant.

# Compute reactive flux between wild type and 7-site mutant.
tpt = TransitionPathTheory (evomsm, [0], [127])

Now we can use the reactive flux to compute the pathways that go from genotype 0 (0000000) to 127 (1111111) and
their relative probabilities.

paths = tpt.ReactiveFlux.pathways ()

Visualize Transition Path Theory output.
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# Sort path probabilities
path_probabilitities = sorted(paths([l], reverse=True)

# Normalize all paths with probability > 0.001.

prob_sum = sum(path_probabilitities)

norm_path_probabilities = [prob/prob_sum for prob in path_probabilitities if prob/
—prob_sum > 0.001]

x = range (len(norm_path_probabilities))

# Draw figure
figsize=(20,8)
fig, (axl, ax2) = plt.subplots(l, 2, figsize=figsize)

# Plot genotype-phenotype map as network.
plot_network (evomsm, ax=axl, figsize=figsize, node_size=200, flux=dok_matrix (tpt.net_
—flux/tpt.total_flux))

axl.set_title("Normalized probability\nfluxes between top and bottom peak", size=20)
axl.text (1,-0.05, "source peak", size=15)
axl.text (1,-7.1, "target peak", size=105)

# Plot the probabilities of the most likely paths.
ax2.bar (x, norm_path_probabilities, color='0.3")

ax2.set_xlabel ("Paths", size=20)
ax2.set_ylabel ("Probability", size=20)
ax2.set_title("Probability of Paths", size=20)

Normalized probability
fluxes between top and bottom peak Probability of Paths

source peak

°
8

Probability

0.01

target peak

Coarse-grain genotype-phenotype map using PCCA+.
Next, we use Robust Perron-Cluster Cluster Analysis (PCCA+) to coarse-grain the genotype-phenotype map.

# Cluster genotype-phenotype map into 4 clusters.
pcca = PCCA (evomsm, 4)

Since PCCA+ might not return the 4 clusters in the order that we prefer, we have to reorder the clusters.

# Find peaks and order them.
peaks = sorted([list (peak) [0] for peak in evomsm.peaks()])

(continues on next page)
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(continued from previous page)

# Reorder the pcca clusters according to the peak they contain.
ord_clusters = sort_clusters_by_nodes (pcca.clusters, peaks)

# We simply instantiate a new object for the newly sorted clusters
clustering = GenotypePhenotypeClusters (evomsm, ord_clusters)

# Memberships won't be in order but can be reordered using the command below
reordered_row = pcca.memberships[clustering.order, :]

reordered_mem = reordered_row[:, [0,1,3,2]]

clustering.memberships = reordered_mem

# Check if sorting was correct by finding the peak in each cluster.
string = ""
for i, cluster in enumerate(clustering.clusters):
for peak in peaks:
if peak in cluster:
string = string + "Cluster %s: %s (%s)\n" % (i, clustering.gpmsm.gpm.data.
—binary[peak], peak)
print (string)

Cluster 0: 0000000 (0)

Cluster 1: 0001110 (14)
Cluster 2: 1100101 (101)
Cluster 3: 1111111 (127)

Visualize the metastability of the coarse-grained genotype-phenotype map.

If we plot the coarse transition matrix, we see that most of the transition probability is located at the diagonal, i.e.
transitions that happen within a cluster are more likely than transitions between clusters. The colorbar on the right is
in log10(transition probability).

# Plot coarse-grained transition matrix.
fig, ax = plt.subplots(figsize=(7,5.5))
header = 17

ax_labels = 15

plot_matrix (clustering.transition_matrix, ax=ax, colorbar=True)
ax.set_title("Coarse-grained transition matrix", size=header)
ax.set_ylabel ("Clusters", size=ax_labels)

ax.set_xlabel ("Clusters", size=ax_labels)

ax.set_aspect ("equal")

plt.tight_layout ()

1.1. Typical Pipeline 7
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Analyze evolutionary mechanisms along fitness peaks.

Finally, we can analyze evolutionary trajectories that pass genotypes of interest. In this example we will look at the
trajectories that pass through peak 2 on their way to peak 4 (1-2-4). We split the trajectories into the part between peak
1 and 2 and the part between peak 2 and 4. We find that the sub-trajectories between 2 and 4 are much less constrained
than the ones between 1 and 2, which we quantify by calculating the mean path divergence.

# First get normalized path probabilities as dict
path_probs = paths_and_probs_to_dict (paths[0], paths[l], normalize=True)
all_paths = list (path_probs.keys())

# Path 1-2-4

pathsl24 = paths_that_do_not_contain(paths_that_contain(all_paths, [0,14,127], bool_
—and=True), [10117)

pathsl24_probs = {path: path_probs[path] for path in pathsl24}

mpdl24 = mean_path_divergence (evomsm, pathsl24_probs)

entrl24 = entropy(list(pathsl24_probs.values()))

## Segment 1-2

pathsl24_12 = get_sub_paths (pathsl24_probs, 0, 14)
mdpl24_12 = mean_path_divergence (evomsm, pathsl24_12)
## Segment 2-4

pathsl24_24 = get_sub_paths (pathsl24_probs, 14, 127)
mdpl24_24 = mean_path_divergence (evomsm, pathsl24_24)

(continues on next page)
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(continued from previous page)

print ("Path\tPath count\tMean Path Divergence\n2s\t%s\t\t%s\n2s\tss\t\tss\nss\t2s\t\t
—%s" % ("1-2", len(pathsl24_12), round(mdpl24_12,2), "2-4", len(pathsl24_24),
—round (mdpl24_24,2), "1-2-4", len(pathsl24), round(mpdl24, 2)))

Path Path count Mean Path Divergence
1-2 & Q.77

2-4 42 29.69

1-2-4 45 59.88

1.2 Installation and Dependencies

1.2.1 Installation

To get the lastest published version, install using pip:

pip install gpvolve

To install from source, clone this repo and install using pip:

User can clone the github repository and install it locally.

git clone https://github.com/harmslab/gpvolve
cd gpvolve
pip install -e .

1.2.2 Dependencies

The following dependencies are required for the gpvolve package.
* gpmap: Module for constructing powerful genotype-phenotype map python data-structures.
 gpgraph_: Module for graphic representation of genotype-phenotype maps built on top of networkx.
» networkx: Python package for construction and analysis of networks and graphs.

» msmtools: Python package containing tools for construction and analysis of markov models, including Transi-
tion Path Theory and PCCA+.

e numpy: Python’s array manipulation package.
* cython: Programming language written in Python with C-like performance.

» matplotlib: Python plotting library.

1.3 Writing a fithess function

How to write your own selection function:

1.2. Installation and Dependencies 9
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’# code here.

1.4 Writing a fixation function

1.5 APl documentation

This page lists all modules in the gpvolve library. If you find missing documentation, feel free to open an issue or

(better yet) submit a pull request!

1.5.1 gpvolve.markovmodel
1.5.2 gpvolve.fitness

1.5.3 gpvolve.fixation

1.5.4 gpvolve.flux

1.5.5 gpvolve.paths

1.5.6 gpvolve.visualization
1.5.7 gpvolve.utils

1.5.8 gpvolve.cluster.base
1.5.9 gpvolve.cluster.pcca
1.5.10 gpvolve.cluster.from_paths
1.5.11 gpvolve.cluster.utils

1.5.12 gpvolve.analysis.pathways
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