
gpvolve Documentation
Release 0.2.0

Leander D. Goldbach

Aug 21, 2020

Contents

1 User Documentation 3

2 References 11

i

ii

gpvolve Documentation, Release 0.2.0

A Python API for simulating and analyzing evolution in genotype-phenotype space.

GPvolve can used to:

1. Build a markov state model from a genotype-phenotype-map.

2. Find clusters of genotypes that represent metastable states of the system, using PCCA+.

3. Compute fluxes and pathways between pairs of genotypes and/or clusters of interest, using Transition Path
Theory.

4. Visualize the outputs of all of the above.

The core-utilities of this library are built on top of the pyemma and msmtools packages. For a deeper understanding
of these tools, we recommend reading the docs and scientific references of the respective libraries (1,2,3).

A rationale for treating fitness landscapes as markov systems can be found in4.

Currently, this package works only as an API. There is no command-line interface. Instead, we encourage you use this
package inside Jupyter notebooks .

1 https://github.com/markovmodel/PyEMMA
2 https://github.com/markovmodel/msmtools
3 M K Scherer, B Trendelkamp-Schroer, F Paul, G Pérez-Hernández, M Hoffmann, N Plattner, C Wehmeyer, J-H Prinz and F Noé: PyEMMA

2: A Software Package for Estimation, Validation, and Analysis of Markov Models, J. Chem. Theory Comput. 11, 5525-5542 (2015)
4 G Sella, A E Hirsh: The application of statistical physics to evolutionary biology, Proceedings of the National Academy of Sciences Jul 2005,

102 (27) 9541-9546; DOI: 10.1073/pnas.0501865102

Contents 1

https://www.jupyter.org
https://github.com/markovmodel/PyEMMA
https://github.com/markovmodel/msmtools

gpvolve Documentation, Release 0.2.0

2 Contents

CHAPTER 1

User Documentation

1.1 Typical Pipeline

The tools included in the gpvolve API can be combined into a computational pipeline which simplifies the repetition
of analyzes. We recommend using Jupyter notebooks for this purpose.

3

gpvolve Documentation, Release 0.2.0

In the following example we will to go through the 5 steps shown in the figure above. We note that the pipeline is
modular, meaning that all steps except step 1 and step 2 can be executed in any desired order.

4 Chapter 1. User Documentation

gpvolve Documentation, Release 0.2.0

1.1.1 Example

Import functions.

Import gpvolve functions explicitly.
from gpvolve import GenotypePhenotypeMSM
from gpvolve.fitness import one_to_one
from gpvolve.fixation import mccandlish
from gpvolve.flux import TransitionPathTheory
from gpvolve.visualization import plot_network, plot_matrix
from gpvolve.paths import flux_decomp
from gpvolve.utils import *
from gpvolve.cluster.pcca import PCCA
from gpvolve.cluster.base import GenotypePhenotypeClusters
from gpvolve.cluster.utils import *
from gpvolve.analysis.pathways import *

Import gpmap for genotype-phenotype data handling
from gpmap.simulate import MultiPeakMountFujiSimulation, MountFujiSimulation

Helper and plotting functions.
import matplotlib.pyplot as plt
from scipy.sparse import dok_matrix
import pickle

Load data.

Simulate 7-site map with 4 fitness peaks. Can also import exisiting genotype-phenotype data here. See the gpmap
Python package for more information (https://github.com/harmslab/gpmap)

gpm = MultiPeakMountFujiSimulation.from_length(7, peak_n=4, min_dist=2, roughness_
→˓width=0.2, field_strength=1)

Build Markov model.

First we need to map a fitness value onto each phenotype. In this example we simple use phenotype values as fitnesses.
The user can also pass their own fitness function here.

evomsm.apply_selection(one_to_one)

Building the transition matrix requires the user to define a fixation probability function and all its required parame-
teres. Here, we use the fitness function by McCandlish (McCandlish, 2011) and a population size of 10.

evomsm.build_transition_matrix(mccandlish, population_size=10)

Transition Path Theory

Having built an evolutionary Markov model of the genotype-phenotype map, we can use Transition Path Theory to
compute reactive flux that moves from the wild type to the 7-site mutant.

Compute reactive flux between wild type and 7-site mutant.
tpt = TransitionPathTheory(evomsm, [0], [127])

Now we can use the reactive flux to compute the pathways that go from genotype 0 (0000000) to 127 (1111111) and
their relative probabilities.

paths = tpt.ReactiveFlux.pathways()

Visualize Transition Path Theory output.

1.1. Typical Pipeline 5

https://github.com/harmslab/gpmap

gpvolve Documentation, Release 0.2.0

Sort path probabilities
path_probabilitities = sorted(paths[1], reverse=True)

Normalize all paths with probability > 0.001.
prob_sum = sum(path_probabilitities)
norm_path_probabilities = [prob/prob_sum for prob in path_probabilitities if prob/
→˓prob_sum > 0.001]
x = range(len(norm_path_probabilities))

Draw figure
figsize=(20,8)
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=figsize)

Plot genotype-phenotype map as network.
plot_network(evomsm, ax=ax1, figsize=figsize, node_size=200, flux=dok_matrix(tpt.net_
→˓flux/tpt.total_flux))

ax1.set_title("Normalized probability\nfluxes between top and bottom peak", size=20)
ax1.text(1,-0.05, "source peak", size=15)
ax1.text(1,-7.1, "target peak", size=15)

Plot the probabilities of the most likely paths.
ax2.bar(x, norm_path_probabilities, color='0.3')

ax2.set_xlabel("Paths", size=20)
ax2.set_ylabel("Probability", size=20)
ax2.set_title("Probability of Paths", size=20)

Coarse-grain genotype-phenotype map using PCCA+.

Next, we use Robust Perron-Cluster Cluster Analysis (PCCA+) to coarse-grain the genotype-phenotype map.

Cluster genotype-phenotype map into 4 clusters.
pcca = PCCA(evomsm, 4)

Since PCCA+ might not return the 4 clusters in the order that we prefer, we have to reorder the clusters.

Find peaks and order them.
peaks = sorted([list(peak)[0] for peak in evomsm.peaks()])

(continues on next page)

6 Chapter 1. User Documentation

gpvolve Documentation, Release 0.2.0

(continued from previous page)

Reorder the pcca clusters according to the peak they contain.
ord_clusters = sort_clusters_by_nodes(pcca.clusters, peaks)

We simply instantiate a new object for the newly sorted clusters
clustering = GenotypePhenotypeClusters(evomsm, ord_clusters)

Memberships won't be in order but can be reordered using the command below
reordered_row = pcca.memberships[clustering.order, :]
reordered_mem = reordered_row[:, [0,1,3,2]]
clustering.memberships = reordered_mem

Check if sorting was correct by finding the peak in each cluster.
string = ""
for i, cluster in enumerate(clustering.clusters):

for peak in peaks:
if peak in cluster:

string = string + "Cluster %s: %s (%s)\n" % (i, clustering.gpmsm.gpm.data.
→˓binary[peak], peak)
print(string)

Visualize the metastability of the coarse-grained genotype-phenotype map.

If we plot the coarse transition matrix, we see that most of the transition probability is located at the diagonal, i.e.
transitions that happen within a cluster are more likely than transitions between clusters. The colorbar on the right is
in log10(transition probability).

Plot coarse-grained transition matrix.
fig, ax = plt.subplots(figsize=(7,5.5))
header = 17
ax_labels = 15

plot_matrix(clustering.transition_matrix, ax=ax, colorbar=True)
ax.set_title("Coarse-grained transition matrix", size=header)
ax.set_ylabel("Clusters", size=ax_labels)
ax.set_xlabel("Clusters", size=ax_labels)
ax.set_aspect("equal")

plt.tight_layout()

1.1. Typical Pipeline 7

gpvolve Documentation, Release 0.2.0

Analyze evolutionary mechanisms along fitness peaks.

Finally, we can analyze evolutionary trajectories that pass genotypes of interest. In this example we will look at the
trajectories that pass through peak 2 on their way to peak 4 (1-2-4). We split the trajectories into the part between peak
1 and 2 and the part between peak 2 and 4. We find that the sub-trajectories between 2 and 4 are much less constrained
than the ones between 1 and 2, which we quantify by calculating the mean path divergence.

First get normalized path probabilities as dict
path_probs = paths_and_probs_to_dict(paths[0], paths[1], normalize=True)
all_paths = list(path_probs.keys())

Path 1-2-4
paths124 = paths_that_do_not_contain(paths_that_contain(all_paths, [0,14,127], bool_
→˓and=True), [101])
paths124_probs = {path: path_probs[path] for path in paths124}
mpd124 = mean_path_divergence(evomsm, paths124_probs)
entr124 = entropy(list(paths124_probs.values()))

Segment 1-2
paths124_12 = get_sub_paths(paths124_probs, 0, 14)
mdp124_12 = mean_path_divergence(evomsm, paths124_12)
Segment 2-4
paths124_24 = get_sub_paths(paths124_probs, 14, 127)
mdp124_24 = mean_path_divergence(evomsm, paths124_24)

(continues on next page)

8 Chapter 1. User Documentation

gpvolve Documentation, Release 0.2.0

(continued from previous page)

print("Path\tPath count\tMean Path Divergence\n%s\t%s\t\t%s\n%s\t%s\t\t%s\n%s\t%s\t\t
→˓%s" % ("1-2", len(paths124_12), round(mdp124_12,2), "2-4", len(paths124_24),
→˓round(mdp124_24,2), "1-2-4", len(paths124), round(mpd124, 2)))

1.2 Installation and Dependencies

1.2.1 Installation

To get the lastest published version, install using pip:

pip install gpvolve

To install from source, clone this repo and install using pip:

User can clone the github repository and install it locally.

git clone https://github.com/harmslab/gpvolve
cd gpvolve
pip install -e .

1.2.2 Dependencies

The following dependencies are required for the gpvolve package.

• gpmap: Module for constructing powerful genotype-phenotype map python data-structures.

• gpgraph_: Module for graphic representation of genotype-phenotype maps built on top of networkx.

• networkx: Python package for construction and analysis of networks and graphs.

• msmtools: Python package containing tools for construction and analysis of markov models, including Transi-
tion Path Theory and PCCA+.

• numpy: Python’s array manipulation package.

• cython: Programming language written in Python with C-like performance.

• matplotlib: Python plotting library.

1.3 Writing a fitness function

How to write your own selection function:

1.2. Installation and Dependencies 9

https://github.com/harmslab/gpmap
https://github.com/networkx
https://github.com/markovmodel/msmtools
http://www.numpy.org/
https://github.com/cython/cython
http://matplotlib.org/

gpvolve Documentation, Release 0.2.0

code here.

1.4 Writing a fixation function

1.5 API documentation

This page lists all modules in the gpvolve library. If you find missing documentation, feel free to open an issue or
(better yet) submit a pull request!

1.5.1 gpvolve.markovmodel

1.5.2 gpvolve.fitness

1.5.3 gpvolve.fixation

1.5.4 gpvolve.flux

1.5.5 gpvolve.paths

1.5.6 gpvolve.visualization

1.5.7 gpvolve.utils

1.5.8 gpvolve.cluster.base

1.5.9 gpvolve.cluster.pcca

1.5.10 gpvolve.cluster.from_paths

1.5.11 gpvolve.cluster.utils

1.5.12 gpvolve.analysis.pathways

10 Chapter 1. User Documentation

CHAPTER 2

References

11

	User Documentation
	References

