

gpvolve

[image: _images/comp_pipeline.png]
A Python API for simulating and analyzing evolution in genotype-phenotype space.

GPvolve can used to:

	Build a markov state model from a genotype-phenotype-map.

	Find clusters of genotypes that represent metastable states of the system, using PCCA+.

	Compute fluxes and pathways between pairs of genotypes and/or clusters of interest, using Transition Path Theory.

	Visualize the outputs of all of the above.

The core-utilities of this library are built on top of the pyemma and msmtools packages.
For a deeper understanding of these tools, we recommend reading the docs and scientific
references of the respective libraries (1, 2, 3).

A rationale for treating fitness landscapes as markov systems can be found in 4.

Currently, this package works only as an API. There is no command-line
interface. Instead, we encourage you use this package inside Jupyter notebooks [https://www.jupyter.org] .

User Documentation

	Typical Pipeline

	Installation and Dependencies

	Writing a fitness function

	Writing a fixation function

	API documentation

References

	1

	https://github.com/markovmodel/PyEMMA

	2

	https://github.com/markovmodel/msmtools

	3

	M K Scherer, B Trendelkamp-Schroer, F Paul, G Pérez-Hernández, M Hoffmann, N Plattner, C Wehmeyer, J-H Prinz and F Noé: PyEMMA 2: A Software Package for Estimation, Validation, and Analysis of Markov Models, J. Chem. Theory Comput. 11, 5525-5542 (2015)

	4

	G Sella, A E Hirsh: The application of statistical physics to evolutionary biology, Proceedings of the National Academy of Sciences Jul 2005, 102 (27) 9541-9546; DOI: 10.1073/pnas.0501865102

Typical Pipeline

The tools included in the gpvolve API can be combined into a computational pipeline which simplifies the repetition
of analyzes. We recommend using Jupyter notebooks for this purpose.

[image: ../_images/comp_pipeline1.png]
In the following example we will to go through the 5 steps shown in the figure above. We note that the pipeline is
modular, meaning that all steps except step 1 and step 2 can be executed in any desired order.

Example

Import functions.

Import gpvolve functions explicitly.
from gpvolve import GenotypePhenotypeMSM
from gpvolve.fitness import one_to_one
from gpvolve.fixation import mccandlish
from gpvolve.flux import TransitionPathTheory
from gpvolve.visualization import plot_network, plot_matrix
from gpvolve.paths import flux_decomp
from gpvolve.utils import *
from gpvolve.cluster.pcca import PCCA
from gpvolve.cluster.base import GenotypePhenotypeClusters
from gpvolve.cluster.utils import *
from gpvolve.analysis.pathways import *

Import gpmap for genotype-phenotype data handling
from gpmap.simulate import MultiPeakMountFujiSimulation, MountFujiSimulation

Helper and plotting functions.
import matplotlib.pyplot as plt
from scipy.sparse import dok_matrix
import pickle

Load data.

Simulate 7-site map with 4 fitness peaks. Can also import exisiting genotype-phenotype data here.
See the gpmap Python package for more information (https://github.com/harmslab/gpmap)

gpm = MultiPeakMountFujiSimulation.from_length(7, peak_n=4, min_dist=2, roughness_width=0.2, field_strength=1)

Build Markov model.

First we need to map a fitness value onto each phenotype. In this example we simple use phenotype values as fitnesses.
The user can also pass their own fitness function here.

evomsm.apply_selection(one_to_one)

Building the transition matrix requires the user to define a fixation probability function and all its required
parameteres. Here, we use the fitness function by McCandlish (McCandlish, 2011) and a population size of 10.

evomsm.build_transition_matrix(mccandlish, population_size=10)

Transition Path Theory

Having built an evolutionary Markov model of the genotype-phenotype map, we can use Transition Path Theory to compute
reactive flux that moves from the wild type to the 7-site mutant.

Compute reactive flux between wild type and 7-site mutant.
tpt = TransitionPathTheory(evomsm, [0], [127])

Now we can use the reactive flux to compute the pathways that go from genotype 0 (0000000) to 127 (1111111) and their relative probabilities.

paths = tpt.ReactiveFlux.pathways()

Visualize Transition Path Theory output.

Sort path probabilities
path_probabilitities = sorted(paths[1], reverse=True)

Normalize all paths with probability > 0.001.
prob_sum = sum(path_probabilitities)
norm_path_probabilities = [prob/prob_sum for prob in path_probabilitities if prob/prob_sum > 0.001]
x = range(len(norm_path_probabilities))

Draw figure
figsize=(20,8)
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=figsize)

Plot genotype-phenotype map as network.
plot_network(evomsm, ax=ax1, figsize=figsize, node_size=200, flux=dok_matrix(tpt.net_flux/tpt.total_flux))

ax1.set_title("Normalized probability\nfluxes between top and bottom peak", size=20)
ax1.text(1,-0.05, "source peak", size=15)
ax1.text(1,-7.1, "target peak", size=15)

Plot the probabilities of the most likely paths.
ax2.bar(x, norm_path_probabilities, color='0.3')

ax2.set_xlabel("Paths", size=20)
ax2.set_ylabel("Probability", size=20)
ax2.set_title("Probability of Paths", size=20)

[image: ../_images/tpt_output.png]
Coarse-grain genotype-phenotype map using PCCA+.

Next, we use Robust Perron-Cluster Cluster Analysis (PCCA+) to coarse-grain the genotype-phenotype map.

Cluster genotype-phenotype map into 4 clusters.
pcca = PCCA(evomsm, 4)

Since PCCA+ might not return the 4 clusters in the order that we prefer, we have to reorder the clusters.

Find peaks and order them.
peaks = sorted([list(peak)[0] for peak in evomsm.peaks()])

Reorder the pcca clusters according to the peak they contain.
ord_clusters = sort_clusters_by_nodes(pcca.clusters, peaks)

We simply instantiate a new object for the newly sorted clusters
clustering = GenotypePhenotypeClusters(evomsm, ord_clusters)

Memberships won't be in order but can be reordered using the command below
reordered_row = pcca.memberships[clustering.order, :]
reordered_mem = reordered_row[:, [0,1,3,2]]
clustering.memberships = reordered_mem

Check if sorting was correct by finding the peak in each cluster.
string = ""
for i, cluster in enumerate(clustering.clusters):
 for peak in peaks:
 if peak in cluster:
 string = string + "Cluster %s: %s (%s)\n" % (i, clustering.gpmsm.gpm.data.binary[peak], peak)
print(string)

[image: ../_images/pcca_ordering.png]
Visualize the metastability of the coarse-grained genotype-phenotype map.

If we plot the coarse transition matrix, we see that most of the transition probability is located at the
diagonal, i.e. transitions that happen within a cluster are more likely than transitions between clusters.
The colorbar on the right is in log10(transition probability).

Plot coarse-grained transition matrix.
fig, ax = plt.subplots(figsize=(7,5.5))
header = 17
ax_labels = 15

plot_matrix(clustering.transition_matrix, ax=ax, colorbar=True)
ax.set_title("Coarse-grained transition matrix", size=header)
ax.set_ylabel("Clusters", size=ax_labels)
ax.set_xlabel("Clusters", size=ax_labels)
ax.set_aspect("equal")

plt.tight_layout()

[image: ../_images/pcca_tm.png]
Analyze evolutionary mechanisms along fitness peaks.

Finally, we can analyze evolutionary trajectories that pass genotypes of interest. In this example we will look at the
trajectories that pass through peak 2 on their way to peak 4 (1-2-4). We split the trajectories
into the part between peak 1 and 2 and the part between peak 2 and 4. We find that the sub-trajectories between 2 and 4 are
much less constrained than the ones between 1 and 2, which we quantify by calculating the mean path divergence.

First get normalized path probabilities as dict
path_probs = paths_and_probs_to_dict(paths[0], paths[1], normalize=True)
all_paths = list(path_probs.keys())

Path 1-2-4
paths124 = paths_that_do_not_contain(paths_that_contain(all_paths, [0,14,127], bool_and=True), [101])
paths124_probs = {path: path_probs[path] for path in paths124}
mpd124 = mean_path_divergence(evomsm, paths124_probs)
entr124 = entropy(list(paths124_probs.values()))

Segment 1-2
paths124_12 = get_sub_paths(paths124_probs, 0, 14)
mdp124_12 = mean_path_divergence(evomsm, paths124_12)
Segment 2-4
paths124_24 = get_sub_paths(paths124_probs, 14, 127)
mdp124_24 = mean_path_divergence(evomsm, paths124_24)

print("Path\tPath count\tMean Path Divergence\n%s\t%s\t\t%s\n%s\t%s\t\t%s\n%s\t%s\t\t%s" % ("1-2", len(paths124_12), round(mdp124_12,2), "2-4", len(paths124_24), round(mdp124_24,2), "1-2-4", len(paths124), round(mpd124, 2)))

[image: ../_images/path_analysis.png]

Installation and Dependencies

Installation

To get the lastest published version, install using pip:

pip install gpvolve

To install from source, clone this repo and install using pip:

User can clone the github repository and install it locally.

git clone https://github.com/harmslab/gpvolve
cd gpvolve
pip install -e .

Dependencies

The following dependencies are required for the gpvolve package.

	gpmap [https://github.com/harmslab/gpmap]: Module for constructing powerful genotype-phenotype map python data-structures.

	gpgraph_: Module for graphic representation of genotype-phenotype maps built on top of networkx.

	networkx [https://github.com/networkx]: Python package for construction and analysis of networks and graphs.

	msmtools [https://github.com/markovmodel/msmtools]: Python package containing tools for construction and analysis of markov models, including Transition Path Theory and PCCA+.

	numpy [http://www.numpy.org/]: Python’s array manipulation package.

	cython [https://github.com/cython/cython]: Programming language written in Python with C-like performance.

	matplotlib [http://matplotlib.org/]: Python plotting library.

Writing a fitness function

How to write your own selection function:

code here.

Writing a fixation function

API documentation

This page lists all modules in the gpvolve library. If you find missing documentation,
feel free to open an issue or (better yet) submit a pull request!

	gpvolve.markovmodel

	gpvolve.fitness

	gpvolve.fixation

	gpvolve.flux

	gpvolve.paths

	gpvolve.markovmodel

	gpvolve.visualization

	gpvolve.utils

	gpvolve.cluster.base

	gpvolve.cluster.pcca

	gpvolve.cluster.from_paths

	gpvolve.cluster.utils

	gpvolve.analysis.pathways

gpvolve.markovmodel

gpvolve.fitness

gpvolve.fixation

gpvolve.flux

gpvolve.paths

gpvolve.markovmodel

gpvolve.visualization

gpvolve.utils

gpvolve.cluster.base

gpvolve.cluster.pcca

gpvolve.cluster.from_paths

gpvolve.cluster.utils

gpvolve.analysis.pathways

Index

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/lgoldbach/gpvolve/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

gpvolve could always use more documentation, whether as part of the
official gpvolve docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/lgoldbach/gpvolve/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up gpvolve for local development.

	Fork the gpvolve repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/gpvolve.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv gpvolve
$ cd gpvolve/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ flake8 gpvolve tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.7, 3.4, 3.5 and 3.6, and for PyPy. Check
https://travis-ci.org/lgoldbach/gpvolve/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ py.test tests.test_gpvolve

Deploying

A reminder for the maintainers on how to deploy.
Make sure all your changes are committed (including an entry in HISTORY.rst).
Then run:

$ bumpversion patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

History

0.1.0 (2018-08-21)

	First release on PyPI.

0.2.0 (2020-08-14)

Installation

Stable release

To install gpvolve, run this command in your terminal:

$ pip install gpvolve

This is the preferred method to install gpvolve, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for gpvolve can be downloaded from the Github repo [https://github.com/lgoldbach/gpvolve].

You can either clone the public repository:

$ git clone git://github.com/lgoldbach/gpvolve

Or download the tarball [https://github.com/lgoldbach/gpvolve/tarball/master]:

$ curl -OL https://github.com/lgoldbach/gpvolve/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

 _static/comment-bright.png

_images/tpt_output.png
Normalized probability
fluxes between top and bottom peak Probability of Paths

source peak

Probability

target peak

30
Paths

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_images/path_analysis.png
Path count
6

42

45

Mean Path Divergence
0.77

29.69

59.88

_images/pcca_ordering.png
Cluster
Cluster
Cluster
Cluster

¢ 0000000 (0)

0001110 (14)
1100101 (101)
1111111 (127)

_images/comp_pipeline.png
GERW, 0.4,

GRw, 23,
T 12,

Transition Path
Theory

M <3

Eigenvalues

Analysis & Visualization

_images/comp_pipeline1.png
GERW, 0.4,

GRw, 23,
T 12,

Transition Path
Theory

M <3

Eigenvalues

Analysis & Visualization

_images/pcca_tm.png
Clusters

Coarse-grained transition matrix

-0.25

—0.50

-0.75

-—1.00

-—1.25

- —1.50

-—1.75

- —2.00

0 1

2
Clusters

_static/minus.png

nav.xhtml

 Table of Contents

 		
 gpvolve

 		
 Typical Pipeline

 		
 Example

 		
 Installation and Dependencies

 		
 Installation

 		
 Dependencies

 		
 Writing a fitness function

 		
 Writing a fixation function

 		
 API documentation

 		
 gpvolve.markovmodel

 		
 gpvolve.fitness

 		
 gpvolve.fixation

 		
 gpvolve.flux

 		
 gpvolve.paths

 		
 gpvolve.markovmodel

 		
 gpvolve.visualization

 		
 gpvolve.utils

 		
 gpvolve.cluster.base

 		
 gpvolve.cluster.pcca

 		
 gpvolve.cluster.from_paths

 		
 gpvolve.cluster.utils

 		
 gpvolve.analysis.pathways

_static/up-pressed.png

_static/up.png

_static/plus.png

